

INNOVATION THAT MATTERS™

Advanced Fabric Innovations to Maximize the Performance of HPEC Systems

Marc Couture Director, Product Management

Arnold Sodder Consulting Systems Architect

Embedded Technology Trends January 22, 2013

Processing Density shows no sign of stopping

- AVX Core count, Shader Processor count, going up as nm geometry goes down
- Intel
 - Mobile Class has four AVX/AVX2-enabled cores + GT2/3 GPUs
 - Server Class moving from 8 cores to 10 and even 12 per device
- GPUs
 - AMD
 - 960 processors in 40nm 6970M
 - 1280 processors in 28nm 7970M
- Two of the above devices, Intel or GPU, can fit onto a single 6U OpenVPX module for an immense amount of compute power

Hard to become compute bound, but I/O bound is easy

Maximizing Capability per SWaP-C Platform

Balancing Compute, Memory, I/O (External & Fabric) Bandwidth

Advances in Backplane Technology Needed for Next-Gen Interconnects

- Current OpenVPX backplane based on standard RT2 connector topping out at 6.25 Gbaud due to increasing:
 - Channel Loss
 - Channel Reflection
 - Channel Cross Talk
- Signal Integrity loss becomes exaggerated with increasing:
 - Slot count
 - Dataplane & Expansion Plane lanes
 - Traffic on mezzanine and RTMs
 - Temperature extremes
 - Vibration

We need to speed up without degradation

Next Generation Infrastructure

- Advances in connector and backplane technology will get us to 8.0 Gbaud and beyond, needed for Next-Gen Fabric Interconnects:
 - PCIe Gen 3
 - Infiniband QDR
 - 40 GigE

© 2013 Mercury Systems, Inc.

Rugged (better vibration)

The OpenVPX Multi-Plane Elevation

- Choices for the Data Plane mesh/switch fabric are varied
- The Expansion Plane is primarily PCIe

Enabling sophisticated interactions within the system

openVPX

Example Topologies, Switched Dataplane

Matching the problem with slots that scale effectively

Payload Fabric Endpoints

- Currently utilizing Protocol **Offload Engine Technology** (POET[™]) IP on FPGAs for Serial RapidIO Gen 2 @ 3.125, 5.0, and 6.25 Gbaud/sec and 10 GigE
- Will be using Mellanox ConnectX-3 for InfiniBand at various rates and eventually 40 GigE
- Will intersect back with POFT IP on FPGAs in the future

Next, we need to speed up the I/O to the processors

Intel Server Class coupled with Mellanox

- Addresses the InfiniBand HPC market (e.g. Bladecenter) providing a path to embedded 6U OpenVPX
- Utilizes Mellanox ConnectX-3 for InfiniBand DDR, QDR
- Supports OFED, tightly coupled to InfiniBand
- Same analogy for 40GigE

Mobilization/Ruggedization of the Server

OpenVPX Switch Modules for HPEC

SRIO & 10GigE today, Moving to InfiniBand and 40GigE tomorrow

Fabric Interconnect Enabling Multi-Dimensional Apps

Sensor I/O Integrated into the Switched Fabric

- The current VPX infrastructure is stalling out from an Signal Integrity aspect
- Next gen connector, backplane, and cooling technologies will kick OpenVPX into the next gear
- We'll be able to get maximum mileage out of these massive many-core HPEC compute engines
- And we'll be able to put them in tight spots (SWaP)

Breaking through to the next level with HPEC in OpenVPX

INNOVATION THAT MATTERS™

© 2013 Mercury Systems, Inc.

Q & A

Thank You